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ABSTRACT 

If a locally compact group G acts on a Lebesgue probability space (X, A), it is 
natural to consider these conditions: (a) each group element preserves the class 
of A, and (b) the action function is measurable. The latter is a weakening of the 
requirement that the action be Borel, provided X has a particular Borel 
structure as well as the o--algebra of measurable sets. In this paper, we give an 
example showing that such an action need not be Borel relative to the given 
Borel structure, and prove that there is always a conull invariant subset and a 
new standard Borel structure on that subset for which the action is Borel. This is 
the meaning of the title. 

O. Introduction 

When studying actions of locally compact groups, which we always assume to 

be second countable, topological actions and Borel actions occur and are natural 

types to consider. When a quasiinvariant measure is present, it also seems 

natural to consider broadening the context to include measurability, giving the 

measure or its class more prominence. Here  the first notion involved is to allow 

mappings under which inverse images of Borel sets are not required to be Borel  

sets, but only measurable, i.e., in the completion of the Borel sets relative to the 

measure in question. Once the measure is completed, we notice that it is possible 

for it to be the completion of its restriction to more than one o'-algebra of "Borel  

sets". Thus we can start with a measure and a Borel space and complete it, or 

start with a complete measure and find compatible Borel structures. To put more 

weight on the measure in our definition of measurable actions, we take the latter 

point of departure. The conclusion of the theorem will be that with the proper  

choice of Borel structure we can obtain a standard Borel G-space on an 
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invariant set that is conull in the given space. In particular, from the measure 

theoretic viewpoint, no generality is lost by studying only Borel actions. 

All details, including definitions, are given later, but here we give an outline of 

the argument: Let (X, if//, A) be a Lebesgue probability space and let G be a 

locally compact group. If a : X × G --~ X is an action of G on X, on the right, we 

may write xg for a(x, g). For a to be measurable, we require first that every 

a ( . , g )  be a measurable automorphism of (X, ~/, [A ]), i.e. preserving the 

measure class [A]. Then G acts on the measure algebra M(A), by automor- 

phisms, and on L2(A), by unitary operators. For the latter we use a 

Radon-Nikodym derivative to compensate for the fact that a given g E G may 

not preserve A. If we identify M(A) with a set of projections on L 2(A), the action 

of G on M(A) is implemented by the unitary operators. In fact we have a system 

of imprimitivity. If a is measurable, that unitary representation is measurable 

and hence continuous. If the action of G on M(A) is even weakly measurable, 

then there is a compact topological G-space Y and a Borel measure/~ on Y so 

that M(/~) and M(A) are isomorphic as G-spaces. Taking first any 

map ~bl: Y---~ X which implements this isomorphism, we find ~bl can be changed 

on a nt:ll set to get an equivariant measurable map ~b. Then ~b carries a conull 

invariant Borel set in Y one-one onto a conull invariant set in X, and that gives 

the desired Borel structure. This is what it means for the given action to be 

essentially Borel. By proper choice of invariant subset and Borel structure, 

whenever the techniques for Borel space actions would be useful, they are 

available. 
It may be worth noticing that the theorem we use says we can even have this 

subset isomorphic to a Borel subset in a compact metric space on which the 

action is continuous [7, Theorem 7.5.5], but we do not know that it is isomorphic 

to a closed set, or even a G~. It would be interesting to know if the Borel set can 

be given a Polish topology, maintaining continuity of the action. The issue here is 

that the group may not be discrete, since for discrete groups such a result is 

known [12]. 

After giving two formulations of the definition of measurable action, we give 

an example showing that there exist Borel structures compatible with a given 

measure class for which the action a is not Borel. Of course, the positive result 

of the paper is that good choices of Borel structure can also be made. 

I want to thank B. Weiss for raising the question in the first place, and for 

helpful discussions about the ideas in the paper. I also want to thank the 

Mathematical Sciences Research Institute, Berkeley, and its staff, for their kind 

hospitality. 
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1. Definitions, an Example and the Theorem 

It is common in ergodic theory to study transformations of Lebesgue spaces, 

and we will follow that tradition. One way to say that (X, M, A) is a Lebesgue 
(probability) space is to say that it is isomorphic modulo null sets to the unit 

interval with Lebesgue measurable sets and Lebesgue measure [2, Appendix 1; 

10; 11, page 2]. From this it follows that there is a countably generated 

a-algebra, ~1, contained in M such that 

(1) A is the completion of A [ ~ and there is a conull set X1 C_ X such that 

(X1, ~1 IX1) is a standard Borel space. 

Thus, for any such ~1, (X, ~ , ,  A I ~  ) is metrically standard [4]. Also, every 

M-measurable function on X agrees a.e. with a ~3rmeasurable function, and for 

any property of points in X that holds a.e. there is a conull element of ~ ,  on 

which it holds. This set may even be taken to be a subset of X~, and hence 

standard as a Borel space. 

We take the strict definition of automorphism for a Lebesgue space (X, ~ ,  [A ]) 

or (X, [A ]): a measurable automorphism is a function f taking X one-one onto X 
such that f ~(E)E ~ when E E M, and the image measure f(A) is equivalent to 

A. Thus f preserves ~ and [A], or f is non-singular. We could allow f to be a 

bijection between conull subsets, but for a general group of transformations it is 

best to use the strict definition. If ~ is a o--algebra satisfying (1), and f :  X--> X 

is one-one and onto and such that f ~(E) E M whenever E E ~ ,  we can define 

f(A) I ~ .  If f(A)l ~ - A I ~ ,  it follows easily that f ~(E) E M whenever E E ~ .  

If Y is a Borel space and f:  X--> Y, we call f A-measurable provided f ~(B) ~ M 
whenever B C Y is Borel. This terminology is chosen to emphasize the 

distinction between A-measurable functions and Borel (measurable) functions. 

An automorphism of (X, [A ]) induces a measure algebra automorphism. The 

measure algebra M(A) is defined to be M/A-~(0), measurable sets modulo null 

sets. Since M is obtained from ~ ,  by adjoining null sets, M(A) is also ~31/null 

sets. Now let q be the quotient homomorphism of M onto M(A). Then 

f*(q(E))  = q ( f - ' (E ) ) f o r  E E ~ defines an automorphism of M(A). 

Let G be a locally compact group. Then there is a finite Borel measure v on G 

such that ~ is equivalent to Haar measure and symmetric: v(B -~) = u(B) for 

every Borel set B contained in G. Let a : X x G --> X be a (right) action of G on 

X. We want to discuss possible definitions of the measurability of this action. The 

first condition we impose is 

(M1) for g in G, a ( .  ,g)  is a measurable automorphism of (X,[A]). 
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Since a is our action, each a ( . , g )  is one-one and onto, so all (M1) adds is 

measurability of the function and its behavior relative to [A]. 

Condition (M1) says that the action gives a homomorphism (or anti- 

homomorphism) of G into the group Aut(X, [A l), but it does not require any 

continuity or measurability of that homomorphism. There are at least two ways 

to add such a condition. The first we mention is a natural generalization of the 

usual definition of a Borel action: 

(M2) a is A x v-measurable. 

Note that this depends only on the classes of A and u. By itself, (M2) implies that 

almost every a ( - , g )  is measurable, but says nothing about how these maps 

move A. Together (M1) and (M2) seem to make reasonable conditions for 

defining measurability of a, or the notion of a measurable group of automor- 

phisms of (X, [A ]). 

DEFINmON. I f  (X, M, A) is a Lebesgue space, G is a locally compact group 

and a : X x G ~ X is an action of G on X, we say a is measurable iff (M1) and 

(M2) are satisfied. 

For later use, we point out a single condition which is equivalent to the 

combination of (M1) and (M2). The statement involves an involution r of X x G 

defined by r ( x , g ) = ( a ( x , g ) , g - 1 ) .  This is the inversion map of the groupoid 

X x G .  

LEMMA 1. The action a is measurable iff (M) z is a measurable automorphism 

of ( x  x G, x ul). 

PROOF. Since the coordinate projections are Borel functions, ~- is A x u- 

measurable i l t a  is. Write Ag for the image measure a ( . ,  g)(A). Then 

'T(,~ X U) 

since u is symmetric. Hence r(A x u) - A x u iff Ag - A for almost every g in G 

[3, Theorem 1]. (Thus (M1) and (M2) imply (M).) 

Conversely, if (M) holds then the set of g in G for which a ( - , g )  is a 

measurable automorphism of (X, [A ]) is a conull set. Because a is an action, this 

set is closed under multiplication and hence must be all of G [8, see Corollary 

5.3]. Thus (M) implies (M1) and (M2). 

Before proving that a measurable action does have an associated Borel action, 

we show that there can exist Borel structures compatible with the given complete 
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measure for which the action is not Borel. In fact both changing the Borel 

structure and deleting a bad invariant null set may be necessary in order to get a 

standard Borel G-space. 

EXAMPLE. Let (X, G)  be a standard Borel G-space, with a quasiinvariant 

probability measure A. Let M be the A-completion of G. If a : X × G --~ X is the 

action, then a is measurable because it is Borel. Let N be any uncountable Borel 

null set in X. In some cases there exist such N's  meeting every orbit. For 

example, take an irrational winding on the 2-torus and N a circle. Since N is 

uncountable, there is a bijection 0: N - *  N which is not a Borel function. Let 

Go ={BC_X: B \NEG and O-~(BNN)EG}. 

Then G0 ¢ G, but G 7/G0 is still dense in M. Also, a subset of N which belongs 

to G0 can be translated to a subset of X \ N  which is not in G0 (look at the 

2-torus again). Thus a will no longer be Borel. Since the A-measurable sets are 

still the same, a is still measurable. For additional pathology, we could adjoin to 

X the space of cosets for some non-closed subgroup of G and give the added set 

measure zero. The new space is still a Lebesgue space and the action is 

measurable, but to get a standard Borel G-space from it the bad set must be 

deleted. 

Our method for finding a Borel version of a measurable action involves 

Boolean actions [5]. Let q be the quotient mapping of M(A) and G ( X )  onto 

M(A). Then we can define a :  M ( a ) x  G---> M(A) by a(q(B),g)= q(a(B,g)) 
for B E M(A). This is a valid definition provided a satisfies (M1), and a is an 

action of G on M(A), at least algebraically. Each c~(., g) is an automorphism of 

M(A) and we have an antihomomorphism of G into Aut(M(A)). Again the 

question of continuity or measurability of this homomorphism arises, and first it 

is necessary to discuss topologies and Borel structures on M(A). The measure of 

the symmetric difference of two elements defines a metric in which M(A) is 

complete [1, page 261], but for our purposes it is more convenient to think of 

M(A) as the set of projections in L~(A) and give M(A) the weak topology and 

Borel structure that comes from the fact that L~(A) is the dual of LI(A). This is 

the same as we get by thinking of L ~(A ) as an algebra of multiplication operators 

on L2(A), and taking the weak operator  topology and Borel structure. About  the 

weakest condition we could add to (M1) is weak measurability [5]: (M3) for each 

b ~ M ( A ) ,  g~a(b,g)is  measurable from G to M(A). By taking linear 

combinations of characteristic functions and monotone limits, we see that (M3) is 

equivalent to: 
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(M3') for b~, b2 in M(A), g ~, A(b. ^ a(b2, g)) is measurable. 

The condition (M3) is sufficient to guarantee that a Boolean action can be 

realized by a point action [5, 7, 8], so we want to prove a lemma that allows us to 

use (M3). 

LEMMA 2. A measurable action is weakly measurable. 

PROOF. Recall the involution ~-. There is a conull Borel set A C_ X x G such 

that ~- ]A is Borel. Then A n ~--~(A) = (~- ]A)  ~(A) is also conull and Borel, so 

we may suppose A is invariant under ~-. Then there is a Borel function 

p: X x G --~ (0, ~) which serves as d~-(A x u)/dA × v. As on page 316 of [8], p can 

be modified on a null set in X x G so that ( W ( g ) f ) ( x )  = p(x, g)~/2f(xg) defines a 

measurable, and hence continuous unitary representation of G on L2(A) having 

the canonical projection valued measure on L2(A), Q as a system of imprimitiv- 

ity. Then, identifying M(A) with the projections of L~(A) acting on LZ(A), we 

have a ( q ( B ) , g ) =  W(g )  ~ Q ( B ) W ( g )  for B E M ( A )  and g E G. Then the joint 

continuity of a is clear, which at least implies (M3). 

REMARK. The proof that W is measurable can also be done by the method 

used to prove Proposition 3.4 of [9], since a countably generated ~r-algebra maps 

onto M(A). This method uses a characterization of the unitary operators W ( g )  

that does not involve the Radon-Nikodym derivatives. 

Now we are ready for the positive result of this note: 

THEOREM. Let (X, M, A) be a Lebesgue probability space, let G be a locally 

compact group and let a" X x G ~ X be a weakly measurable action of G on X. 

Then there exist a conull invariant set X,, C_ X and a standard Borel structure g3o on 

Xo such that 

(i) a I X~ x G is a Borel function to Xo, 

(ii) ~o C M and each element of M differs from some element of ~3o by a null set. 

PROOF. The plan is to take the associated Boolean action and get a point 

realization of it on a compact topological G-space Y. Then there will exist a 

point map implementing the Boolean isomorphism, and it can be changed on a 

null set to get a map taking a conull invariant set in Y to the desired Xo. 

According to Theorem 7.5.5 of [7], since a satisfies (M3), which we extend 

from M(A) to L~(A), there is a norm separable C*-algebra, ~', contained in 

L~(A) and containing I, such that a • ~ / x  G -~ ,ff is norm continuous and ~ is 

dense in L~(A) in the weak ~perator  topology. Then duality gives a topological 
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action of G on the maximal ideal space of d ,  which we will denote by Y. The 

G-equivariant  isomorphism of C ( Y )  onto sg extends to a system of imprimitiv- 

ity for W, based on Y, which we denote by P. The range of P is M(A)C_ L=(A), 

and we denote by tx the Borel measure on Y which results: I x (B)=  A(P(B)).  

Here we think of A as being defined on M(A). 

Next, there is a Borel function to1: Y--~ X, taking values in a conull standard 

subset and one-one on a conull Borel set Y1, such that for E E M(A) we have 

O ( E )  = P(to;'(E)). This follows by an application of Satz 1 of [6] or Theorem 

2.1 of [8]. Now we need to change 0, slightly. First notice that for E E M(A) and 

g E G, we have 

P(to,'(Eg)) = Q ( E g ) =  Q(E)g  = P(to, '(E))g = P(to;'(E)g), 

from which it follows that to,(yg)= toj(y)g for /x-a.e. y, whenever g E G, 

because both spaces are countably separated. Let v be a probability measure on 

G equivalent to Haar measure. Since a is measurable, there is a conutl Borel set 

A C X x G such that a [ A is Borel, and A can even be chosen to be standard. 

Let 

B = {(y, g) E Y × G:  (to~(y), g) E A and to,(yg) = tol(y)g}. 

Then B is a Borel set because a I A is Borel and to~ is Borel, and B is conull 

because A is conull and for each g E G we have tot(yg) = to~(y)g for /z -a .e .y .  

Let Y 2 = { y E Y :  v ( B y ) = l }  (By=y- sec t i on  of B). Then Y2 is Borel and 

/x-conull. Let 

Y,,={y E Y: v ( { g E G :  y g E  Y,f-/ Y2}) = 1}. 

Then it is not hard to show that Yo is Borel, conull and invariant. Since Y is 

standard, so is Yo. If y E I/2, then for almost every g we have tol(yg)g J = 0,(y),  

at least for g E By. Now let y E Yo and choose g~ E G so that ygl E Y2. Then 

t)~(yglg)g l =  $~(yg~) for almost every g, so to,(yg)g-1 = to~(yg~)g , for almost 

every g. In particular, for y E Yo the function taking g in G to to~(yg)g-~ is 

essentially constant. We define to(y) to be that constant, tp.(yg~)g7 j. For 

y E Y~ N I/_, we can choose g~ = e above, so to(y) = to~(y). Thus to is measurable, 

since YI f) .1/2 is conull, and to is one-one on Y~ f3 Y2. Now to show that to is 

equivariant, let y E Yo, g~ E (7, and choose g2 E G so that yg~g2 E Y~. Then 

t0(y) = to,(yg,g2)(g,g2) -1 and to(yg,)= to,(yg~g2)g; -~, 

so to(yg~) = to(y)g~. Now we can show that to is one-one on Y0. Let y~ ~ y2 be in 

Y,,. Since y,g is almost always in Y~ f) Y2 and the same holds for y2g, there is at 
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least one g such that ylg and y2g are both in YiN Y2. Then to(yl) = 

to,(y,g)g-' # qJ,(y2g)g ' = to(y2). 
Now tO maps Yo one-one and equivariantly into X. Since to~(#)-A, the set 

to(Y~f3 Y2)= to,(YIO Y2) must be conull, so to(Y0) is conull. Also, from 

tol(/-~)- A it follows that each element of M(A) is within a null set of some set 

to(E D Yl fq Y2) = to l (E N Y1 f) Y2) for E E G(Y).  Thus we can let Go = 

{to(E): B ~ G(Yo)}, because (Yo, G(Yo)) and (X,, Go) are isomorphic as Borel 

G-spaces. 
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